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ABSTRACT

The origins of the colors of Trans-Neptunian Objects (TNOs) represent a crucial unresolved question,10

central to understanding the history of our Solar System. Recent observational surveys have revealed11

correlations between the eccentricity and inclination of TNOs and their colors. This has rekindled12

the long-standing debate on whether these colors reflect the conditions of TNO formation or their13

subsequent collisional evolution. In this study, we address this question with 98.7% certainty, using a14

model-agnostic, data-driven approach based on causal graphs. First, as a sanity check, we demonstrate15

how our model can replicate the currently accepted paradigms of TNOs’ dynamical history, blindly and16

without any orbital modeling or physics-based assumptions. We then show how this model predicts,17

with high certainty, that the color of TNOs is the root cause of their inclination distribution, rather than18

the other way around. This strongly suggests that the colors of TNOs reflect an underlying dynamical19

property, most likely their formation location. Moreover, our causal model excludes formation scenarios20

that invoke substantial color modification by subsequent irradiation. We therefore conclude that the21

colors of TNOs are predominantly primordial.22

Keywords: Kuiper belt (893); Small Solar System bodies (1469); Trans-Neptunian objects (1705);23

Astrostatistics (1882)24

1. INTRODUCTION25

Trans-Neptunian Objects (TNOs) are invaluable

probes into the history and evolution of our Solar Sys-

tem (A. Morbidelli & D. Nesvorný 2020). However, the

wealth of information they encode is often difficult to

decipher. This includes intrinsic characteristics such as

their sizes and correlated properties such as their orbits

and surface photometric colors. The last two have long

been closely examined in an effort to unravel the relation

between them (D. C. Jewitt & J. X. Luu 2001).

Although the history of these studies is long, here we

focus on M. Marsset et al. (2019) who found a strong

correlation between the inclination and colors of TNOs.
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More precisely, using the Colours of the Outer Solar

System Origin Survey (COl-OSSOS; M. E. Schwamb

et al. 2019) observations, they concluded that Very Red

Objects (VROs) have a cutoff maximum inclination of

around 21◦, in contrast to the more gray Less Red Ob-

jects (LROs). These results were expanded by M. Ali-

Dib et al. (2021), who found an analogous trend where

the eccentricity of VROs is cutoff at 0.42. They con-

cluded that there is a paucity of VROs in the scattered

disk, and used a Solar System formation model to ex-

plain these trends as a consequence of their formation

location in the disk. In this scenario, using causality the-

ory jargon, eccentricity (e) and inclination (i) are said

to be caused by the colors, which is indicative of the

formation location.

The primordial origin hypothesis of the TNO color

diversity argues that TNO colors reflect compositional
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gradients in the protoplanetary disk, preserved since for-

mation (D. Nesvorný et al. 2020; M. Ali-Dib et al. 2021).

Objects formed at different heliocentric distances thus

acquired distinct volatile and refractory compositions,

leading to color variations. For example, objects that

formed beyond the CO and N2 snowlines could have ac-

quired redder surfaces. Dynamical processes (e.g., plan-

etary migration and scattering) later redistributed these

bodies into their current orbits, imprinting correlations

between color and orbital parameters like inclination.

However, in a alternative way, many works (J. X.

Luu & D. C. Jewitt 1996; S. A. Stern 2002) argued

that collisional evolution is the origin of TNO colors,

where collisions expose fresh subsurface ices or organic

materials, altering albedo and spectral slopes. Dynam-

ically excited populations (higher e and i) experience

more frequent collisions due to orbital crossings, leading

to color–inclination correlations. This framework treats

color as a secondary property shaped by post-formation

bombardment. Opponents of this model argue that if

collisional resurfacing were causal, dynamically excited

populations would exhibit homogenized colors over time

due to frequent mixing.

A third possibility proposed that initially diverse

bulk compositions undergo selective volatile evaporation

post-formation, establishing steep compositional gradi-

ents across the primordial disk that, coupled with subse-

quent UV photolysis and particle irradiation, yield dis-

tinct surface chemistries (M. E. Brown et al. 2011; I.

Wong & M. E. Brown 2017). A key difference between

this and the “primordial origin” hypothesis is the ne-

cessity of post-formation irradiation. From a causality

lens, this introduces a causal relationship between the

current semimajor axis and the color of TNOs.

In this paper, we use a purely data-driven, model-

agnostic, statistical causal discovery method to study

the relationships between the dynamical parameters of

TNOs, and between those and the TNO colors. We

show that not only this technique allows us to derive

some of the main lines of the current consensus on the

origins of TNOs, but also that it elucidates the direction

of causality between the dynamical parameters and col-

ors of TNOs. We first detail an overview of our causal

discovery methods (§2) including a description of our

data sample (§2.1), present the results of our analysis

(§3), and conclude with a discussion and overall sum-

mary (§4). Additionally, we include an Appendix (§A)

to cover the details of our ancillary test with Gaussian-

ization.

2. METHODOLOGY

2.1. Data

Our dataset is based on (but not exclusively) the Col-

OSSOS survey (M. E. Schwamb et al. 2019). It was

taken from M. Marsset et al. (2019) and M. Ali-Dib et al.

(2021). It consists of a total of 229 TNOs including hot

classicals, centaurs, and resonant/scattered objects, in

a dataset for which discovery biases were modeled. For

each TNO, we have three orbital elements: semimajor

axis (a), eccentricity (e), and inclination (i); and we

have spectral slope (i.e., color).

A fundamental assumption of this work is that colors

are primordial, and thus strongly correlated to the initial

location of a TNO. Hereafter, we treat colors as a proxy

for the initial semimajor axis of the objects. See Fig. 1

for a pairplot showing all the pairwise relations between

our data.5 Additionally, Fig. 1 shows the subpopulation

in our data by separating each TNO by its classifications

as either a Classical (48), Resonant (102), Centaur (36),

Scattered (28), or Detached (15) object.

Our dataset is further summarized in Fig. 2. We de-

fine VROs as TNOs with spectral slopes greater than

20.6%/(103 Å). The color–eccentricity correlation is re-

vealed in this plot as a paucity of VROs for eccentricity

above 0.42. Similarly, the color–inclination correlation

manifests itself as a lack of VROs for inclinations above

21◦.

2.2. Causal Discovery: Identifying Cause-effect

Relationships

Identifying cause-effect relationships is crucial for

moving beyond mere correlation to uncover the under-

lying causal mechanisms governing a system. Tradition-

ally, causal relationships are established through inter-

ventions or randomized experiments, where one variable

is explicitly manipulated while all others are held con-

stant, and the resulting effects are observed. However,

such interventions are infeasible in fields like astronomy,

where the “test subjects” exist at unreachable astro-

nomical distances. Consequently, advanced methods are

required to infer causal relationships from purely obser-

vational data—an endeavor that lies at the core of causal

discovery (P. Spirtes et al. 2001).

The foundation of causal discovery lies in uncovering

the footprints of causality embedded in data. One of

the most important sources of such information is de-

pendency relations. By analyzing conditional indepen-

dence among different components of an observed sys-

5 See §A for a further test on applying nonlinear transformations
to Gaussianize our data.
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Figure 1. Pairplot of all 229 TNOs in our study. The TNOs are further divided into their individual populations: 48 Classicals
(•), 102 Resonant (•), 36 Centaurs (•), 28 Scattered (•), and 15 Detached (•).

tem, we can infer causal relationships between pairs of

variables. This allows us to construct a graph that en-

codes the results of essential conditional independence

tests, revealing which variables cause others under ap-

propriate conditions. Ideally, the output is a Directed

Acyclic Graph (DAG) for a unique solution or a Com-

pleted Partially Directed Acyclic Graph (CPDAG) for

a Markov equivalence class. However, when some vari-

ables remain unmeasured, certain causal relationships

may be undetermined, leading to a Partial Ancestral

Graph (PAG). For further reading on causal discovery

and causality, see Causation, Prediction, and Search (P.

Spirtes et al. 2001), Causality (J. Pearl 2009), or the

review in Z. Jin et al. (2025b, §2).6

2.3. Causal Structures with Latent Variables

Since it is impossible to measure all variables in the

Universe, latent variables are always present. These un-

measured variables can significantly impact the correct-

ness of the causal structure discovered. For example,

6 In addition to Z. Jin et al. (2025b), readers may be interested
in further applications of causal discovery to astrophysical data
(M. Pasquato et al. 2023; M. Pasquato 2024; Z. Jin et al. 2024,
2025a).
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Figure 2. The M. Marsset et al. (2019) and M. Ali-Dib et al. (2021) sample shown as a–e (left) and a–i (right) plots. Colors
were defined such that red ( ) is for Very Red Objects (spectral slopes higher than 20.6%/(103 Å)) and gray ( ) is for Less
Red Objects. The plot clearly shows the paucity of VROs for eccentricities higher than 0.42 and inclinations higher than 21◦,
respectively ( ).

suppose that X and Y are independent in the general

population, but a sample is selected based on a vari-

able Z that influences both X and Y . In that case, X

and Y may exhibit statistical dependence in the sam-

ple, even though no such relationship exists in the pop-

ulation. This can lead to spurious causal conclusions,

falsely suggesting a direct causal relationship between

X and Y .

To address this challenge, we employ a principled ap-

proach capable of uncovering causal relationships even in

the presence of latent variables. A widely used method

for this purpose is Fast Causal Inference (FCI; P. Spirtes

et al. 1995; J. Zhang 2008), a constraint-based algorithm

that has been proven to provide sound causal conclu-

sions despite unmeasured variables. FCI has been ap-

plied across various scientific domains, including biol-

ogy, economics, and climate science. For our analysis

of TNO orbits, we use the FCI implementation in the

Python package causal-learn (Y. Zheng et al. 2024) to

infer the underlying causal structure.

FCI discovers causal relationships by performing a se-

ries of conditional independence (CI) tests. These tests

examine whether the statistical dependence between two

variables disappears when controlling for other vari-

ables. If two variables become independent when condi-

tioning on a third, this suggests that the third variable

may be an intermediary or a common cause.

Unlike many causal discovery methods that assume

that all relevant variables are measured (such as those

producing DAGs or CPDAGs), FCI accounts for the

possibility of unobserved variables. As a result, its out-

put is a PAG, which provides more nuanced causal in-

formation. The edges in a PAG have different interpre-

tations:

• X −−→ Y : X is a cause of Y .

• X ◦−→ Y : Y is not an ancestor of X. Intuitively,

this implies Y cannot be a cause of X, whether

directly or indirectly.

• X ◦—◦ Y : No set d-separates X and Y . In other

words, they may be causally adjacent or share a

latent common cause.

• X ←→ Y : There is a latent common cause of X

and Y .

Therefore, by accounting for latent variables in the dis-

covery process, we can uncover causal relations among

measured variables while acknowledging uncertainties

introduced by unmeasured factors. More importantly,

when the algorithm cannot determine a definitive causal

direction due to latent variables, it explicitly represents

this uncertainty rather than arbitrarily assigning a direc-

tion. This principled approach distinguishes causal anal-

ysis from correlation-based techniques, ensuring that

conclusions are drawn with a clear acknowledgment of

underlying assumptions and limitations.
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3. RESULTS

3.1. Data-driven Results

Our primary findings are summarized in Fig. 3 show-

ing the statistically most likely PAG fitting our data,

at 98.7% confidence. This main result utilizes the FCI

algorithm (P. Spirtes 2001; P. L. Spirtes et al. 2013;

Y. Zheng et al. 2024), with linear Fisher-Z conditional

independence tests (R. A. Fisher 1921), and the thresh-

old for each conditional independence test is α = 0.013

(i.e., all tests must pass at the 98.7% level) on trans-

formed data via Gaussianization. The motivation and

details of the Gaussian transformation can be found in

§A. We still get the same PAG using a linear Fisher-Z

test without any transformation for α = 0.02. It is also

possible to directly use a non-linear conditional indepen-

dence test. Here, we adopt a Kernel-based conditional

independence (KCI) test (K. Zhang et al. 2012), with

a polynomial kernel and reproduce the same PAG as in

Fig. 3 at α = 0.09.7

We emphasize that this PAG was obtained with a

purely data-driven approach, without astrophysical in-

sights. Moreover, we consistently reproduce the same

PAG as in Fig. 3 by jackknifing our data by sequen-

tially leaving out each subpopulation of TNOs. Thus,

removing any subsample of 48 Classicals, 102 Resonant,

36 Centaurs, 28 Scattered, or 15 Detached TNOs re-

sults in no change to our discovered PAG. Therefore, we

demonstrate that no single subpopulation is dominating

the PAG and that our results are robust to outliers.

Alternatively, if we are to generate PAGs for the in-

dividual populations separately (i.e., analyzing only one

subpopulation at a time), we find a large diversity in the

results. Many of these PAGs however are based on very

few datapoints. Taking this result at face value hints

that our overall PAG represents that main-line dynam-
ics dominate over the entire sample.

3.2. Astrophysical Interpretation

The first link we investigate is the one-way causal

direction of the current semimajor axis causing the cur-

rent eccentricity. While the correlation between a and e

in TNOs is well established, the direction of the causality

we find here is not surprising either, as its root physical

causes are:

• Scattering by Neptune, where objects have to

close-encounter Neptune first in order to get scat-

tered into high eccentricity orbits. Moreover, ob-

7 We did not apply non-linear tests in the first place because
a non-linear method is prone to overfitting for the relatively
small size of our data (229 TNOs).

Figure 3. Partial Ancestral Graph (PAG) for 229 TNOs,
calculated with the Fast Causal Inference (FCI) algorithm
(P. Spirtes 2001; P. L. Spirtes et al. 2013; Y. Zheng et al.
2024), for linear Fisher-Z conditional independence tests
(R. A. Fisher 1921) on transformed data, with α = 0.013
(significance level of individual partial correlation tests). On
untransformed data, we recover the identical PAG with lin-
ear Fisher-Z tests and α = 0.02, while the same PAG is
produced with α = 0.09 when we run Kernel-based condi-
tional independence (KCI) tests (K. Zhang et al. 2012), with
a polynomial kernel. This PAG has three causal edges, which
can be described as follows: (i) eccentricity is not an ances-
tor of the semimajor axis, (ii) there is a latent common cause
of eccentricity and inclination, and (iii) inclination is not an
ancestor of color.

jects usually cannot be both close to Neptune (to-

day) and have a high eccentricity. It is the current

semimajor axis of the objects that dictates what

eccentricity they can have, and not the other way

around.

• Mean motion resonances (MMRs), where the

period (and thus current semimajor axis) of

the objects dictates whether they are inside an

eccentricity-raising resonance.

The connection a ◦→ e rules out the possibility of a← e.

Clearly, a → e is possible, but also a ↔ e. The latter

might imply that an unobserved confounder causes both

a and e.

The second link in the PAG is the two-way de-

pendency between the eccentricity and the inclination,

which is consistent with the von Zeipel-Lidov-Kozai (H.

von Zeipel 1910; M. L. Lidov 1962; Y. Kozai 1962)

anti-correlated oscillations between these two quantities

(both inside and outside of MMRs), that plays a cen-

tral role in the dynamics of TNOs. Here, e↔ i implies

that there is an unobserved confounder. Indeed, the

von Zeipel-Lidov-Kozai mechanism involves perturba-
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tions from a third body, here being Neptune. Together,

the first two links successfully reestablish the main dy-

namical processes shaping the Kuiper belt (scattering,

MMRs, and von Zeipel-Lidov-Kozai oscillations) with-

out any physical inputs.

Finally, the third piece of the puzzle is the connec-

tion color ◦→ i ruling out the possibility of color ← i.

The “color” (i.e., a proxy for the formation location in

our null hypothesis) is hence causing the inclination.

This is again dynamically expected, as the formation lo-

cation relative to inclination-raising secular resonances

such as f7 and f8 will strongly affect the inclination dis-

tribution of TNOs (C. D. Murray & S. F. Dermott 1999).

Note that this link, however, leaves open the possibility

of an unobserved confounder causing both color and the

inclination. This confounder can be the formation lo-

cation itself, if we were to assume the color and initial

location to be two distinct variables instead of the color

being a proxy for location.

Our result, that color ← i is not allowed, rules out

the model of J. X. Luu & D. C. Jewitt (1996) and S. A.

Stern (2002), where collisional evolution shapes the col-

ors of TNOs. Moreover, our result that color ← a is

not allowed either, rules out the model of M. E. Brown

et al. (2011) and I. Wong & M. E. Brown (2017), where

a would control the amount of irradiation a TNO is sub-

jected to. We are hence left only with the “primordial

origins” model where the color is set entirely by the

chemical composition of the formation location.

Some further interesting features are found in the

PAG:

• The lack of correlation between the color

and semimajor axis. This is dynamically ex-

pected as all TNOs in our sample underwent dy-

namical interactions with Neptune, that tend to be

chaotic in nature. For example, many of the rel-

evant processes (scattering, resonances, etc.) de-

pend on the phase angle at which the TNO en-

counters Neptune. Some examples of the chaotic

outcomes of the TNO dynamics are shown in

Figs. 11 and 12 of M. Ali-Dib et al. (2021). See

also Fig. 3 of D. Nesvorný et al. (2016).

• The indirect causation between the color

(initial location) and the eccentricity

through the inclination. Taken at face value,

this would indicate that while the initial location

directly causes the inclination, it is the final semi-

major axis that causes the eccentricity. The effect

of the initial semimajor axis on the eccentricity is

indirect, and happens through von Zeipel-Lidov-

Kozai oscillations starting from high inclinations.

In all cases, we note that the correlation coefficient

between the color and eccentricity is around 0.1,

allowing for a minor correlation between the two

that can be seen in less probable PAGs.

4. DISCUSSION & CONCLUSIONS

This work endeavors to resolve the tension between

theories of primordial origins vs. subsequent evolution

to account for the observed dispersion and correlations

in TNO colors, a subject of a long debate. Our causal

graph analysis, derived from a model-agnostic causal

discovery framework, strongly favors the primordial ori-

gin hypothesis, with 98.7% certainty that TNO color is

causally antecedent to inclination, not a consequence of

it. While impacts undoubtedly modify surfaces, our re-

sults suggest they are not the dominant driver of color

diversity. Moreover, our model seems to exclude any

effects from the current semimajor axis on the color of

TNOs, disfavoring models where continuous irradiation

plays a large role in shaping the colors. This will be

explored further in the future.

While many earlier works tried to explain the

inclination–color and eccentricity–color correlations

both separately and simultaneously, our causal ap-

proach isolates inclination as the key dynamical variable

causally linked to color. This hint at a larger role for

inclination-raising secular resonances in the very early

Solar System. Indeed, M. Ali-Dib et al. (2021) pro-

posed that the origins of the paucity of VROs in the

scattered disk is strongly linked to the f7, and f8 inclina-

tion modes. In this scenario, the color–eccentricity cor-

relation is largely (although not necessarily entirely) a

consequence of the more fundamental inclination–color

correlation, where the two can be linked via the von

Zeipel-Lidov-Kozai mechanism. This is consistent with

the numerical model of M. Ali-Dib et al. (2021) who

proposed von Zeipel-Lidov-Kozai oscillations as a trans-

port vehicle for VROs between high inclination and high

eccentricity regimes.

Finally, this work is a proof of principle for the use

of causality models in planetary sciences. With large

datasets ranging from asteroids to exoplanets, many dis-

coveries await.
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APPENDIX

A. DATA PREPROCESSING

Since the Fisher Z-test used in our causal discovery algorithm assumes linear Gaussian distributions of the model,

we apply deterministic, variable-wise transformations to our data for preprocessing. Specifically, we employ the Yeo-

Johnson transformations (I. Yeo & R. A. Johnson 2000) as our primary preprocessing. For the semimajor axis (a)

and eccentricity (e), we employ a combination of Yeo-Johnson and tanh-type transformations to better handle their

nonlinear relationships. For inclination and spectral slope, the standard Yeo-Johnson Gaussianization is sufficient. As

these transformations act independently on each variable and are deterministic, they preserve the underlying causal

structure.

The proprocessed data for all 229 TNOs is displayed as a pairplot in Fig. 4. Using preprocessed data, we reproduce

the same PAG structure as shown in Fig. 3 with α = 0.013. Visual inspection of the transformed data confirms the

effect of the transformation, making the data more suitable for the Fisher Z-test. The transformed scatter plots also

provide insights into causal directions. For instance, when examining the relationship between spectral slope and

inclination in the direction of spectral slope causing inclination (i.e., a linear model of i = k · slope+ ϵ), the noise term

ϵ appears more independent compared to the reverse direction, supporting this causal orientation in our final PAG.
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